第153章 三门问题

    第153章 三门问题 (第3/3页)

率。

    乃至套入贝叶斯定理计算条件概率后,得出的结果也只会是2/3。

    然而,林奇却是摇了摇头。

    “我从三扇门中选择门  a  之后,门后是殿堂卷轴的概率是  1/3。门  b  和门  c  有殿堂卷轴的概率也是  1/3。”

    “根据主持人接下来的线索。如果殿堂卷轴在门  b  后面,主持人会打开门  c。如果殿堂卷轴在门  c  后面,主持人会打开门  b。”

    “因此,如果我改变选择的话,只要殿堂卷轴在门  b  或门  c  后都会赢;如果坚持初心,只有殿堂卷轴在门  a  后我才会赢。”

    “这便是刚刚提及的蒙特卡洛方法,用试验进行模拟,都会发觉换的概率更高,逼近2/3左右的原因。”

    此时五位高等精灵都理解地点点头,这正是他们期待林奇的答案,甚至这就是官方的范本,顺着“蒙特卡洛”方法继续延伸。

    “概率是我等生灵无法全知全能的体现。”为首的高等精灵说道。

    “可这样你便应该知道,两者都是1/2的观点是错误的。”

    然而,林奇仍旧摇头,“我知道这是最终的答案,甚至我曾经意识到这个问题时也无比震惊,可此刻的我,依旧难以接受这点。”

    对面的高等精灵微笑道,“很简单,因为生物的直觉天生就不适合处理概率的问题,偏偏对不确定的局面进行评估与选择时,又深切的依赖直觉。不过这点是进化优势所决定,我们也无从改变。”

    “而大脑中对不确定局面的评估,依赖于情感因素,风险回报部分更是由你大脑的多巴胺机制所参与完成。这种回路机制,对于大脑的奖励性回路,尤其是动机与情感决策部分发挥作用巨大。”

    “然而,这些都是我们学习魔法时,所需要摒弃的杂念。”

    “魔法的研究本身,便是在违背这直觉,便是在超越着概率。”

    对面的高等精灵一路自言自语,仿佛在点化着林奇,像他透露些许魔法的奥妙。

    忽然,林奇开口道。

    “但如果一开始,主持人并不知道哪一扇门有殿堂卷轴呢?”

    高等精灵的眸光渐渐收敛,“那这时换的胜率又是多少呢?”

    “如果用蒙特卡洛算法进行多次试验,那将会接近一个结果。”林奇语气也变得凝重。

    “50%。”