772.反向输出

    772.反向输出 (第2/3页)

以比 CAF 更大程度地收缩凝胶(图B)。在新鲜和冷冻保存的组织中,我们观察到 LM 的基质硬度显着增加(图C-D)。基质硬度与来自同一患者的样本中的COL-I、aSMA 和 p-MLC2 表达相关(图E-G)。

    ?基质硬化调节 EC 增殖、血管生成、血管生长和分支,为了研究这种联系,我们评估了 LM 中的脉管系统,并观察了基质硬度和 CD31 血管面积之间的相关性(图H)。当在凝胶内培养时,允许成纤维细胞重塑基质,MAFs 诱导 EC 发芽的程度显着高于CAFs(图I-K)。因此,MAF 支持伴随局部 ECM 重塑的细胞因子产生血管生成。

    4、肾素-血管紧张素系统抑制目标成纤维细胞

    ?对新鲜分离的 MAF 与肝源性成纤维细胞的 qPCR 分析显示 RAS 系统的所有关键成分(血管紧张素原[AGT]、肾素[REN]、血管紧张素转化酶[ACE]和AT-1[AGTR1]的表达显着增加)。此外,MAFs 表达的 AGT 和 AGTR1 水平显着高于CAFs(图L-O)。为了表征 RAS 靶向对 MAF 功能的影响,我们在用氯沙坦(一种AT-1阻滞剂)或卡托普利(一种ACE抑制剂)治疗后进行了凝胶收缩试验。在低浓度(氯沙坦为1mM,卡托普利为5mM)和高浓度(氯沙坦为10mM,卡托普利为 50mM)时,两者都显着降低了 MAF 凝胶收缩(图P-R)。

    5、RAS 抑制降低转移基质硬度并重塑微环境

    ?与无高血压组和非 RAS 治疗组2相比,接受抗 RAS 药物治疗的患者组织硬度显着降低(图A-B)。进一步评估(通过对同一患者组中的COL-1、aSMA 和 pMLC2 染色)是否可以通过 MAF 激活的下调来解释转移刚度的差异。虽然高血压与 pMLC2 染色的增加相关,但我们没有观察到对aSMA 和 COL-I 的影响(图C-H)。在所有组中,抗 RAS 治疗显示 MAF 激活和 ECM 沉积显着减少(图C-H)。抗RAS药物的作用独立于特定的 RAS 抑制治疗。观察到转移僵硬(不同条件±高血压±抗RAS药物)与COL-I、aSMA和p-MLC2表达之间呈正相关(图I-K),表明MAF激活水平有助于组织僵硬在LM。总之,接受抗 RAS 治疗的患者显示出低肌成纤维细胞/ECM 特征,这解释了转移硬化的减少。

    6、AT1R 信号转导通过 RhoA 介导 MAF 激活

    ?接下来,作者想确定 RAS 抑制如何导致 MAF 激活减少。体外用氯沙坦或卡托普利处理 MAF 表明 LOX 和 COL1A1 mRNA 表达降低(图A-B)。p-MLC2 在 RAS 抑制后也显着减少(图C-D)。氯沙坦和卡托普利治疗显着降低了 ARHGEF1 的酪氨酸磷酸化,并导致活性 RhoA 减少(图E-H)。类似地,ARHGEF1 的敲低导致 p-MLC2 减少,支持血管紧张素-ARHGEF1-RhoA 轴在 MAF 中的作用(图I-J)。总的来说,我们结果表明 RAS 通路抑制剂通过抑制 MAF 主动收缩(图K)以及减少胶原蛋白生成和交联来阻止基质硬化,从而改善肿瘤纤维化过程。

    7、RAS 抑制增加了贝伐单抗的抗血管生成作用

    ?基质硬度不受单独贝伐单抗治疗的影响(图A-B)。在 Bev-组中,与非 RAS 治疗的高血压患者和无高血压患者相比,抗 RAS 治疗导致组织硬度降低(图A,C)。类似地,在 Bev 组中,在抗 RAS 治疗的患者中也观察到了相同的基质硬度降低(所有p<0.001)(图A,D)。此外,抗 RAS 治疗组的硬度降低与特定治疗无关。单独的贝伐单抗治疗不影响 LM 内的 COL-I、aSMA 和 p-MLC2。为了评估抗血管生成治疗(贝伐珠单抗治疗)和RAS 抑制对血管系统的综合影响,我们测量了一大群 CRC LM 中的血管密度。与 Bev-组相比,Bev+组的血管密度显着降低了48.7%± 8.2%。然而,与非RAS、Bev+治疗相比以及与所有 Bev-组。这与使用的 RAS 治疗类型无关。因此,抗 RAS 药物靶向组织硬度,从而影响贝伐单抗的疗效。

    8、通过 

    (本章未完,请点击下一页继续阅读)